
Realistic DNA De-anonymization using

Phenotypic Prediction

Stuart Bradley

2015-09-06

Abstract

There are a number of vectors for attack when trying to link an in-

dividual to a certain DNA sequence. Phenotypic prediction is one such

vector; which links DNA to an individual based on their traits. Current

approaches are not overly effective, due to a number of real world con-

siderations. This report will improve upon current phenotypic prediction,

and suggest a number of methods for defending against such an attack.

1 Introduction

Human DNA is the ultimate key. Linked from a human from birth till death;

it is no wonder that getting hold of such a relationship might be of paramount

importance to many adversarial actors.

The reason that protection of this intrinsic information is so important, is

that we are so careless about passing it around. Every place we go, every

object we touch, we leave a multitude of copies. It would be an impossible task

to hand this key to only those we deem worthy. Instead, striving to control

the link between nucleotide and human, results in the most tractable privacy

strategy.

Part of the problem with this form of defence is the value of DNA informa-

tion. Altruistic parties can use such information to further improve the human

condition. Hiding genetic code from general use then becomes tantamount to

halting scientific progress, and a balance must be struck between saving lives,

and respecting privacy.

Already, organisations like the Personal Genome Project (PGP), OpenSNP,

and 23andMe curate vast databases of human genomes. OpenSNP alone has
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800,000 genetic profiles [1]. When submission occurs to any such database,

participants are assured that their data is stored in an anonymised state. Prac-

tically, this entails not storing raw code with certain pieces of metadata (name

and address), which in America would be in breach of the Health Information

Portability and Accountability Act (HIPAA) [2]. What this does not account

for, is that over 60% of individuals can be identified on their ZIP code, date of

birth, and sex alone [2].

This article will initially look at one type of DNA de-anonymisation attack –

phenotypic prediction. This attack will be discussed in the context of real world

use, and then compared with a number of other methods of DNA infiltration.

These attacks will then be discussed in concert to determine the threat they

pose as a joint vector, before countermeasures are discussed and evaluated.

This will include the inclusion of a new countermeasure: phenotypic salt, known

colloquially, as the red-hairring.

1.1 Briefly, biology

A general understanding of DNA, and its variation is required for a proper

understanding of the topic. This section will attempt to distill human genetics

into a few short paragraphs, and can be ignored by any reader well versed in

the topic.

DNA – from a computer scientist’s perspective – is a character string in a

base-4 alphabet (ATCG). The string – like binary – is a set of encoded functions

for a machine (human) to perform higher order functions. DNA, made up of

nucleotides, encodes the information to build amino acids. These in turn, link

together to encode proteins.

It is at this level that we can begin to think of DNA indirectly producing

macro level functions. For instance, keratin is the structural protein of hair and

fingernails, amongst other things.

The reason two individuals might differ in some aspect, is due to changes in

approximately 0.5% of the genome. Physical traits (phenotypes), differ because

the proteins encoding them are functionally different. Blue eyes occur due to a

lack of the protein melanin [3], which means that the gene encoding melanin is

not functioning correctly. This is likely due to a mutation in the DNA sequence

itself.

It is these mutations that are often the focus in both identification and

research. In the 1990s, microsatellites were used to identify persons involved in
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criminal cases, as well as otherwise unidentifiable bodies in disaster relief efforts

and to determine familial relationships [3].

The specific type of microsatellite, known as a short tandem repeat (STR),

is a DNA sequence between 2 and 13 nucleotides long, which repeats numer-

ous times. The repeat number is highly variable between individuals and can

therefore be used as an identifying marker.

ATTGCATTGCATTGCATTGCATTGCATTGC (1)

Equation 1 is an example of a fictional STR as it is the sequence ATTGC

repeated six times. Part of the problem with using STRs is the amount of

sequence required. To combat this, single nucleotide polymorphisms (SNPs)

can be used instead.

A SNP is a single change in a DNA sequence, which differs from individual

to individual. This is one way in which we get differing physical traits. SNP

mutations result in different sequences – known as alleles – which give rise to

differing phenotypes.

AAAATGCTAGCTGATCTTAGTCGGCGATGCAGTCACGTAA

AAAATGCTAGCTGATCTTAGTCGTCGATGCAGTCACGTAA
(2)

The example shown in Equation 2 shows that far less information is required

to use SNPs for identification compared to STRs. In fact, 20-50 SNPs provides

the same resolution as 10-15 STRs of far greater length [3].

The final useful property of SNP is its relationship to the phenotype of an

individual. In the case of eye colour, a single SNP (rs12913832 in the HERC2

gene), can predict an individuals eye colour, with 88% accuracy [3].

2 Outline of phenotypic prediction

In [1], SNPs from DNA sequences, are used to predict phenotypic traits. In

essence this results in the identification of an individual from their supposedly

anonymous DNA sequence.

Genotypic information can be gathered from a number of sources. Even

without relying on a large scale data breach, over 800,000 individual genomes

are available on OpenSNP. Phenotypic information is somewhat more difficult
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to access, [1] suggests that the prevalence of open social networks allows for

an adversary to gather large amounts of information, both anonymously and

legally.

Using legal data sources broadens the adversarial profile dramatically. With-

out specific legal protections on this action, it is entirely possible that a number

of legal, but ethically questionable, scenarios can occur:

• Corporations can use such an approach to link employees to their genetic

profiles, furthering their ability to discriminate on a number of grounds.

While this is illegal, it can be difficult to prove.

• Insurance companies can use a similar approach as outlined above, with

respect to their customers. What makes this adversary different is in

the case of health insurance, the company likely has a large amount of

physical trait information that it can draw from. This removes the difficult

manual step of combing through social networks to gather the necessary

information.

• One attack that may seem even altruistic, is the case where a researcher

attempts to reach out to a person on the basis of their genetic information.

Perhaps to forewarn of some predisposition to a disease.

The final chunk of data is a relational database that connects SNPs to specific

traits. This can be done as an unsupervised approach, using pre-existing rela-

tional databases, or as a supervised approach, which uses the collected data to

build a statistical model.

Once the requisite data has been collected, [1] outlines two possible attacks

that could result in the de-anonymisation of a single person, or of a large group

of people.

2.1 Identification attack

P ∈ [G] (3)

The identification attack (Equation 3), determines whether a single phenotype P

is contained within a set of genotypes [G], this results in linking the individual

to a particular genotype. From a technical perspective, each genotype gi is

ranked based on the likelihood that it is the genotype of P . This is done by

combining the probabilities each SNP in G is related to some trait in P . This
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is a computationally a very simple problem, and can be done on almost any

computer.

The major downside to this attack is that it only identifies a single individual.

A second proposed attack, perfect matching, attempts to deal with this problem.

2.2 Perfect matching attack

[P ] ∈ [G] (4)

Perfect matching (Equation 4), attempts to match a set of phenotypes, to a set

of genotypes. This means that the problem increases in complexity, as every

gi ∈ [G] must be ranked for every pi ∈ [P ].

Computationally, the problem is known as perfect matching on a weighted

bipartite graph, where every phenotype is joined to every genotype by an edge.

These edges are weighted based on the likelihood the genotype is related to the

phenotype. The sum of these weights is then maximized to produce the most

likely pairings.

2.3 Results

Table 1: Percentage of matches in identification and perfect matching attacks

using differing database sizes. In the unsupervised case, all data was used in

the training and testing sets, as there was not sufficient data to build separate

groups.
Database size = 80 Database size = 10

Unsupervised Supervised Unsupervised Supervised

Identification 5% 13% 44% 52%

Perfect Matching 8% 16% 58% 65%

The results of phenotypic prediction highlight its effectiveness on small datasets,

such as those gathered from a single room of people. Table 1 also eludes to

the fact a statistical machine learning approach might be more effective than

expertly curated databases.
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3 Criticisms of the current approach

While it is important to note [1] was a good first step, it does not provide the

scope for a complete analysis of the attack This is mostly due to the small size

of databases when compared with a realistic database (800,000). This is noted

in the paper, as a suggested as an improvement for further work.

Even with the small datasets, it is still possible to question a number of

assumptions made, in an attempt to produce a more realistic picture of a phe-

notypic prediction.

3.1 Computational tractability of perfect matching

O(n3 + tn2) (5)

Perfect matching has been demonstrated effective in cases where (individuals)

n = 80, 10 and (traits) t = 8 [1]. From Equation 5 this results in an upper

bound of 563200, and 1800 operations respectively.

From here, it is possible to estimate the running times on larger datasets.

However, since the detailed runtimes have not been released, it is very difficult

to determine how accurate the following calculations are.

The numbers above are far below a standard desktop’s 11.5×1012 operations

per second (using GPUs). The issue is when n (the number of people), and t

(the number of traits), increases within a single run. In [1], t is related to a set

of 39 SNPs. [4] suggests using a minimum of 45 SNPs carefully picked, or 300

random SNPs to identify any person to an accuracy of 10−15.
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Figure 1: Number of Floating Point Operations (FLOPs) required to run a

perfect matching attack on n individuals, based on Equation 5. t = 8.

Figure 1 shows the dramatic increase of the required number of FLOPs to attack

an entire database (5.12 × 1017). Given that a desktop runs at 1012 then the

total runtime would be 1.41× 1021 years.

These calculations serve to illustrate that perfect matching is likely not com-

putationally tractable for everyone. This doesn’t mean that this won’t change

as computing power increases, and it is impossible to determine the true cost

without actually attacking larger databases.

When Exa-scale (1018) computing is a reality, this type of approach becomes

feasible to anyone with the infrastructure. Any individual or group attempting

such an attack would need to be highly motivated, and believe that the profit

from such an attack is worth the initial investment.

3.2 Robustness

Another problem with the attack in its current form is its accuracy. Table 1

clearly shows that the current method in no way guarantees that an attack on

an individual, or a group will be particularly successful. This is not a criticism

of the attack, but of the current level of knowledge upon which the attack relies.

As knowledge of the relationships between SNPs and traits improves, so will
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the attack. Interestingly, the fact that the supervised approach did so well,

suggests that as these attacks become more successful, they can train on the

newly cracked data. Thus iteratively improving the accuracy of such an attack.

However, this relies on the fact that the supervised case being better is not just

an artifact of using the same data for both training and testing sets [1].

3.3 Information access

When discussing the collation of information, the complexity of the task is often

ignored. The inclusion of errors in any dataset, can dramatically alter the final

result.

Errors in the phenotype dataset are likely to the result of human error in

the gathering process. Information from social networks has no true guarantee

of accuracy, and therefore could contain incorrect training information (e.g. if

someone had dyed their hair).

Similarly, sequencing errors can occur in genomes. While these are painstak-

ingly removed in the bioinformatics process, it is entirely possible they end up

in the final sequencing data, and if they are in a SNP region of interest, it can

be impossible to tell. The only noticeable change would be in the likelihood of

the results at the end of the process.

While both phenotype and genotype errors can be ignored if they are believed

to be wrong, it means reducing the number of SNPs evaluated. Removing an

SNP from analysis often makes it impossible to rely on the related trait; which

means reducing the number of traits from 8 to 7. This is a 12.5% reduction

in the statistical power of the model, and may well result in mislabeling an

individual.

Errors in the SNP to phenotype database are even worse, since they result in

whole groups of people being mislabeled. Since the supervised approach avoids

this type of error, is more powerful.
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4 Other types of attack

Phenotype prediction is a single type of identity tracing attack. Before dis-

cussing how to combine phenotypic prediction with other forms of attack, a

quick taxonomic overview should be provided [4].

4.1 Identity tracing attacks

Quasi-identifying information (such as gender, ZIP, and date of birth) can be

used to identify a particular genome. As stated before, the combination of

gender, ZIP and date of birth correctly identifies over 60% of individuals.

While there are laws to protect against this form of attack (by reducing the

amount of metadata that can be held in a medical database), extensive public

search databases allow adversaries to link metadata to particular individuals [5].

Genetic genealogy is another vector for identity tracing, this is because sur-

names are often passed paternally, as are Y-chromosomes [2]. By using Y-STRs

it is possible to identify 10-14% of white American males [4], using publicly

available genealogical databases.

Side channel leaks attack the databases of genetic information. In the case

of the PGP, files downloaded from the database containing genetic information

contained full names, once unzipped [4]. Additionally, the generation database

accession numbers from identifying metadata can be attacked if the algorithm

for generation is cracked.

The final type of identity tracing attack is by using pedigree charts. If

familial relationships can be inferred, then any already identified genomes can be

placed within this structure, reducing the search space for remaining members.

4.2 Attribute disclosure attacks

Since DNA is reasonably prevalent in the environment, it is often entirely pos-

sible to appropriate a sample from a victim, and then use the results from a

Genome Wide Association Study (GWAS), to confirm they are in control of the

correct sample.

To avoid this, a number of health agencies have added access control to

genomes in GWAS studies. However, summary statistics remain publicly acces-

sible. These summary statistics are often information rich enough for the same

attack to be performed [4].
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4.3 Completion attacks

Completion attacks use already de-anonymised DNA to infer information about

an anonymous genome based on genotype imputation. This is possible because

relatives may have self-identified public genomes, while the target does not.

Since relatives share many markers with the target, it’s entirely possible to

infer large amounts of information.

This type of attack has been used successfully – and legally – in the Icelandic

deCODE project. In this project, reference DNA was used to infer information

on 200,000 individuals that had never donated their own DNA [4].

5 A combinatorial approach

The statistical basis, and computational approach presented in [1] provides a

good basis for a much more complex attack.

Since a large chunk of phenotypic information is coming from social networks,

it is possible to gather additional information to create a better identity tracing

attack. This is discussed in the original paper, but can be taken a step further

depending on the size of the database that the adversary is working from.

In the n = 10 case, attribute disclosure attacks (ADA) can be used. Since

it’s assumed a database of this size is gathered from actual samples, ADA can

be employed in parallel to phenotype prediction. This helps to increase the

accuracy of such an attack. Completion attacks are also beneficial in this case,

since environmental samples may be significantly degraded [3], and inference

might be necessary.

In the n = 80 case, completion attacks aid in increasing the power of the

supervised method. Initial attacks on smaller datasets can be confirmed (as in

the n = 10 case), which increases the size of the training set for the machine

learning portion of the attack. From here, additional genomes can be imputated,

and the training set can increase in size.

Relationship data gathered from social media, makes possible to build pedi-

gree charts of groups on individuals based on their familial relationships. This

means that once one individual has been identified, the search space for family

members becomes much smaller. This can be used in both a completion and an

identity tracing approach.
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6 Countermeasures

Many current suggestions for protecting against a milieu of DNA de-anonym-

isation attacks involve obscuring the DNA itself. Initially, it was suggested

that the genomes themselves be encrypted. While this is useful for an archival

approach, in many cases it increases the time to run certain analyses three-

fold [4]. Therefore, it is not acceptable for genetic research, and instead has a

place in hospitals; where large scale multi-dimensional genomic research is not

undertaken [1].

Access control is another method that has been suggested [1, 4]. Currently,

this is a widely used approach by many groups. The main problem with this,

is that it slows down research due to the requirement to audit both data users,

and their methods. Making sure a verified user is not doing anything nefarious

with the data is still an open research area [4].

Adding statistical noise to genomic data has also been proposed [1]. As

long as this does not impede work done on the data, it can be highly effective,

and would only require a small amount of additional work to account for its

presence. The attack on such a defensive measure would be akin to rainbow

table on password salt. Whether an attack of this sort is feasible, depends

entirely on how such noise is implemented.

The idea of statistical noise is interesting, and can be explored in the context

of trait information. Where social network information is inaccurate can be seen

as cryptographic salt for phenotypes. This idea can be extended to databases,

so that phenotypic - or even metadata - contains salt, so that in the even of a

database breach, the data is unusable (as it becomes a red-herring).

Haircolour : Brown + Salt→ Black (6)

The problem with phenotypic salt is that incorrect trait information (such as

blood type), can wreak havoc in certain (i.e. medical) situations. Therefore,

this type of defence is only applicable to the database itself. Any end user needs

to see the correct (salt removed) information.

Countermeasures in genetic information need to be multifaceted in order to

deal with both multiple types of attacks, as well as multiple user types. Only

through the application of many measures will it be possible to keep genomic

information safe.
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7 Conclusion

The initial work in [1] proved that the de-anonymisation of DNA was a real

threat. The expansion of this idea proves that it also realistic and completely

possible within the near future, if not right now, in certain cases. A large amount

of work still needs to be done to determine the full capabilities of such an attack.

However, once achieved, they will help inform the use of countermeasures – both

technological, and legal.
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